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Abstract

Tniz ‘hesis presents an application of neurncomput ing
aAs an alternative function approximation rool for predictind
sr<Laniszat tonal pertformance.

rganizational pertormance assessment oo
involives 13soclarion of component ordanizat Lenat ot rrroure—s
T

with a1 composite ordinal rating. nis 13 a —compex

2en-ratication problem which 1s difficulc to solve v
atalvticeal means, Conventional statisrical merthads arve
rarticularls unwieldy for this application because ot the
snknown funetional domain and multi-dimensional inreractons
among predictor varjables,

The back-prepagation neural network 1s an alternatrive
“ane ion anprovimation tool which has been snown to

it perfarm statistical redression in anpilicarions facihiag 2

Ji

well defined demain model.  This research apnlies thi
technoiogy to the problem of predicring ordganizarionl
P r O TmMANC e,

o

Thee cantent and rabtings of Alr Foree i) enginesring
anc bt efiecriveness anspection reports wers used o to o trnn
hack-pronagat ion nearal networis to disceriminate betoeen

Teelcedlent T oand Tsatisfactory” qquadrons. These trained

et ivoern=- signifieant Iy outperformed lodistie recression




models 1n <correctly predicting squadron performance ratings
during cross-validation trials (81 percent versus 61
percent ).

Neurocomputing is a new, rapidly emerging technology
that has only recently been explored in applications bevond
signal, speech and image processing. These results
aemeonstrate a successful application of neurocomputing as an
organizational performance assessment tool. In the
ordanizational scilences, this approach to effectiveness
measurement may prove to be a useful alternative to
conventional least square estimation methods. This
technology can have immediate application as a manadement

decision making tool to help maximize composite

nrganizational effectiveness.




PREDICTING ORGANIZATIONAL PERFORMANCE:

APPLICATION OF NEUROCOMPUTING

AS AN ALTERNATIVE TO STATISTICAL REGRESSION

[. [ntroduction

Overview

Concern with the effectiveness, productivity,
efficiency or excellence of organizations has alwayvs been a
preoccupation of managers, receiving much attention in the
popular and professional literature (2:539; 12:514). Much
of this interest stems from the desire to recognize high
quality performance and to understand how component
attributes combine to vield an effective organization.

Traditional approaches to organizational pertormance
evaluation use efficiency ratios or productivity
measurements which are well defined and relativelv easv to
measure. However, increasing attention is being directed
toward the broader construct of organizational effectiveness
whirh is much harder to measure than process efficiency.

In many organizations, it is not clear what constitutes
optimal performance. Effectiveness criteria is ambiguous
and cannot be defined simply in terms of inputs and outputs
or profit and loss. Public sector organizations, in

particular, lack the private sector dimension of profit as




an aggredate measure of effectiveness and must therefore use
alternativ . anproaches to performance evaluation (1:87-88,.
Effectiveness of such ordanizations is necessarily
determined 1n relative terms using subjective means of
evaluation. Tvpically, multiple measures or ,judgments are
used to arrive at a single adgregate meusure of
nreganizational performance (12:528).

In the case of an Air Force Unit Effectiveness
Inspection, such an approach is used to derive a composite
arganizational rating from a collection of disjcint
observations (e.g. exercise response, budget compliance,
etc. ). Human judgement must be used to discern from these
oSServations patterns which ccrrespond to a given ordiral
performance rating.

A means to capture this human judgement and approximate
rhe relationship, mathematically or otherwise, between such
component olservations and overall performance would te
useful. This modeled relationship could be a supplement to
subjective evaluations and also a helpful management tool.

Such a tool would be particularly useful to commanders
»f base level civil engineering squadrons. Civil
engineering squadrons are complex with many diversified
operat ions,  Commanders are frequently faced with
ronflicting objectives and must determine which ob.jective

contributes most to the success of the organization.

[a]




A method to independently derive a composite unit
rating from component organizational attributes may help
commanders better predict the outcome of their decisions.
Such 2 method could indicate which course of action wuuld
vield the desired outcome. For example, some expert
evaluators consider a civil engineering squadron "effectiv
in terms of its overall support of the host wing mission.
Such support requires productive use of design and
construction resources and shop craftsmen to provide and
maintain host wing facilities. Also important is training
o>f military personnel in preparation for periodic wing
mobility exercises. Both objectives contribute to overall
mission support; however, host wing facility support is
sometimes accomplished at the expense of mobility training
and vice versa. A means to independently assess composite
effectiveness would permit a commander to calibrate
allocation of resources toward each objective to maximize

overall mission support.

Risearch Objective

Civil endgdineering organizations are composed of many
branrhes and shops working in concert to fulfill a broad
unit mission, [t is pos=ible to measure the efficiency

{and, 1n part, effectiveness) of each component. But, it

e"

1s

not as clear how they combline or work in concert to vield an

"excellent ', "satisfactory, "marginal” or “unsatisfactory”




yreantzatron as percelved by ewpert avaluarsars dauring Csnap-
2hot’ inspecrtions.,

tluman ~xperts recognize the relationships and patferns
ameng organizational compenents which correspond to an
overall ordinal performance rating. Can thils expert
Judgement be captured or replicated in such a wav that the
srdinal measuire of effecrlveness mav be discerned
iniiependent 1y by analytical means? Is 1t possible, using
pa=t documented inspections, to approximate the functionnl
relationships between organizational component attributbes
and overall unit effectiveness?” Can these relationships be
used to predicrt the rated effectiveness of an organization
from subsequently collected observations?

The objective of this thesis is to show that it 1=
nossible to capture these relationships and fto agdredgats
tndividual ~component evaluations using deneraliz-=d problem
solving techniques.

Functional Mappings. This tyvpe of generalization

nroblem 13 a subset of a broader olass of problems 1nvalving
wssociations or "mappings” of objects from one sef with
chjects in another set (.2, component attributes ——>
Spditoal rarings). Many such problems, while easy tor
bumans, are difficult to solve analsticallw,

standard AT approaches (rule-based expert =svstems) and
onsventional mathematical techniques (such as statisticad

,

regression; o are particnlarle unwieldy for model Ling




organizational effectiveness. With the compiexity of
organizational dynamics, it would be an enormous if not
impossible task to define an adequate knowledge base for an
expert system application. Approximation of functional
mappings or relationships between predictors and overall
ratings via mathematical regression may be possible.
However, such relationships may be subtle and involve
multiple interactions among predictors. Furthermore, the
functional form of the underlying domain model is unknown
and such an approximation would likely be crude at best.

Naurocomputing. In recent years a new computer

processing technology has emerged capable of human like
performance in such intelligent information processing tasks
as classification and pattern association. Known
alternately as neural networks, neurocomputing, or parallel
distributed processing, this technologyv may overcome manv of
the limitations of traditional mathematical tools.

Neural networks can solve problems involving complex
mappings or relationships which do not lend themselves to
conventional algorithmic solution. This characteristic
suggests neural networks may have a useful application as a
tool for predicting ordanizational performance.

In particular, the recent emergence of back-propagation
networks as an alternative means of function approximation
may make it possible to "extract” the human judgement from

past organizational performance evaluations and use it to




independently derive composite performance ratings from
subsequently collected data.

Unlike statistical regression, which fits selected
classes of fitting functions to the data, back-propagation
networks "learn” the functional relationship from exposure
to training input-output examples. These networks form
their own internal representation of the function instead of
conforming to a hypothesized model. This characteristic
permite back-propagation networks to fit data to unknown
functional forms which may account for the apparent ability
of back-propagation to approximate functions better than
statistical regression techniques (5:2). Neural networks
have been used with impressive results in similar
generalization problems. In particular, neural networks
have been successful in scoring loan applications and
predicting corporate bond ratings (6:40; 3:449).

This research applies this neurocomputing technology to
the problem of predicting organizational performance.
Specifically, the content and unit ratings of past civil
engineering squadron unit effectiveness inspection reports
will be used to "teach"” a candidate neural network to

e

discriminate between "excellent” and "satisfactory”
organizations. The resulting trained network will be used
to evaluate squadrons from separate report data.

This application demonstrates the utility of neuro-

computing as a measurement and prediction tool for the




organizational sciences and perhaps may lead ultimately to

an organizational assessment tool for managers.

-1




1. Background

History of Neurocomputing

Res=arch in the area of neural networks began some
forty vears ago with the work of early cognitive scientists
seeking to understand the mechanisms of biological neural
functioning. Inspired by the phy¥siology and impressive
information processing ability of the human brain, this work
eventually led to mathematical models and ultimately
phvsical implementation of computer networks of neuron-like
elements.

One of the earliest implementations of such networks
was the single-laver perceptron developed by Rosenblatt in
the late 1950s (18:153-159). A mathematical model of a
single laver perceptron is included in appendix A. This
network generated much interest when initially developed
because of its ability to recognize simple patterns.

Bv 1969, however, Minsky and Papert proved single-laver
perceptrons were incapable of solving complex pattern
recognition problems with overlapping decision regions
(13:111; 134:227-232). An example of such a problem is the
exclusive-or parity problem described in appendix B.
Widespread interest in neural networks subsequently waned
and it was not until the recent work of Hoptield, Rumelhart
and others that vigorous research in this area resumed

(13:37.




Today nzural network models have been developed for
whole classes of problem specific applications. These
include combinatorial optimization (e.g. The travelling
salesman problem), pattern recognition (e.g. speech and
image processing) and classification (e.g. predicting bond

ratings) (8:141-132; 4:826-834; 3:443-450; 11:183-192).

Simple Pattern Recognition

Many neural network applications involve some form of
pattern association - matching a set of inputs with a
predeermined class of outputs. For example, a single layer
perceptron can associate pixel pattern coordinates with
certain typed characters.

A single layer perceptron uses a collection of one or
more processing elements to receive and process input
signals and transmit output signals (see appendix A). The
input signals correspond to variables (pixel pattern
coordinates) and the signal emerging from the network
corresponds to a "mapped"” classification (typed character).

Borrowing the mathematical function analogy, this
network is like a ’'black box’ which receives input signals
corresponding to independent variables. After ’'turning the
crank’, the emerding signals represent the dependent
variable or nominal classification.

The internal state of the network (connection weight

values) is determined from exposure to input-output




examples. The internal state of the network, in effect,
'captures’ or defines the functional relationship between
the input variables and nominal classes. The abilityv of
single laver perceptrons to associate or "map” a set of
inputs with a class of outputs is limited to simple
linearlyv-separable classes (see appendix B).

To support mcre complicated mappings, multi-laver
networks are required. Unlike a single-layer perceptron.
the pathway from input to output in a multi-layer network
goes through more than one processing element.

Bv the mid 1980s, a learning algorithm for multi-layer
networks had been developed which could modify the internal
state of hidden layers in response to supervised training.
Enown as back-propagation, this algorithm employs a gradient
descent heuristic that enables a network to self-organize in
wayvs that improve its performance over time (10:155). On-
going research into the theory and application of back-
propagation networks suggests such networks are "universal
approximators” capable of inducing arbitrarily complex

input-output mappings (5:2; 9:3; 10:160).

Multi-layver Perceptron

A multi-layer perceptron or feed-forward network,
consists of a collection of processing elements arranged in
multiple lavers. Each processing element receives many

input signals from elements in previous layers but transmits

10




only a single output signal. This output signal fans out
along many pathways to provide input signals to processing
elements in subsequent layers (figure 1). Each processing
element maintains in local memory the values of adaptive

coefficients known as "weights”. These weights correspond

to connection strengths between processing elements (6:38).

Y1 Y2 Y3 «ag——o— Cutput Array

~—— Qutput Layer

‘ ~———— Connection

~g——— Hidden Layer

\ DProcessing
Element

X1 X2 X3 «g———— Array of Input
Signals

Figure 1. Multi-layer Perceptron.

The value of each element output signal is determined by a
transfer function -~ a mathematical formula that defines the
elements’ output as a function of whatever input signals
have just arrived and the weights present in local memory
(6:38). Figure 2 is a mathematical model of a single

processing element.

11




Xl\\\\\\\\\-§ Input __Qutput
X2 W2 Y
W
X3
Summation Transfer
function function

Xi = incoming signal
Wi = connection weight
Wo = bias similar in function to a threshold
z = net input signal = JJWi*Xi + Wo
Y = output signal = f(z) = f( ZWi*Xi + Wo)
f(z) = transfer function
Figure 2. A Simulated Neuron

The transfer function is typically the sigmoid logistic
function (figure 3}, although it can be any differentiable

function. The sigmoid function is defined as,

f(z) = 1/(1 + expl(-2z) ).

When a vector array of input signals is imposed upon a
trained network, processing elements in the first layer act
simultaneously to process and transmit signals to the second
layer. The second layer simultaneocusly processes and
transmits signals to succeeding layers until the output
signal array emerges from the network.

One way to regard such a multi-layered network is as a
"black box". Entering values are real or binary signals

representing indicator variables and the output is an array




fiz)
14

//

0 7z —pe (net input signal)

Figure 3. Sigmoid Function

of binary signals corresponding to a nominal-type
classification. The hidden and output layers of processing
elements represent the "black box" performing the functional

mapping between predictor variables and nominal class.

Network learning

A multi-layer network learns how to perform the correct
functional mapping by way of supervised training. In
supervised training, the network is supplied with both input
data and desired output data {(correct answers as examples).
In each trial, an input example is imposed on the network
and the actual network output is compared with the desired
nutput. If the output is in error, this error or "delta” is
used to make corrections to elements in the hidden layers by
the generalized delta rule (see appendix C).

The delia rule is a means of propagating the output
error backward through the connections to previous lavers.

These distributed deltas are then used to modify the

13




corresponding connection weights. This process is repeated
in subsequent training trials until the weights conversge to
stable values and the output error reaches an acceptable
level. By this method, the neﬁwork adapts and organizes
information within itself to "learn" the functional mapping
or association. (6:38; 18:319-328; 10:158-160)

The back-propagation algorithm is a generalization of
the least mean square algorithm using a gradient descent
technique to minimize the mean square difference between the
desired and actual net outputs (13:49). As such, this
method may result in convergence to a local minimum instead
of the desired global minimum error. Occurrence of local
minima can be reduced or avoided by modifying network
architecture (allowing extra processing elements, etc.} or
making many training runs starting from different sets of
random weights (13:50; 18:328-331). The back-propagation

algorithm is summarized in appendix D.

Applirations

Multi-layer networks using back-propagation are ideally
suited for parallel computer architectures. But, in the
absence of a parallel computer, neural networks are
tvpically implemented as programmed simulations on
conventional serial-type computers (17:62; 6:17).

While some of these serial type networks may be awkward

and computationally inefficient when implemented as

14




programmed simulations, these network models have
nevertheless been successfully applied to generalization
problems where conventional mathematical modeling techniques
have yielded poor results.

Neural networks have been shown to perform much better
than statistical regression for applications such as
predicting the default risk of bonds and evaluating the
credit risk of bank loans (3:450; 6:17). Conventional
regression approXximations attempt to fit the data to a
specified class of curve fitting functions. These methods
assume the underlying relationship between predictor
variables and the data follows this function. Judging from
the complexity of these applications, such an assumption 1is
likely to limit the utility of regression as a prediction
tool. Neural networks, by contrast, learn their own
internal representation of the underlying function and do
not require any up-front assumptions. In the bond rating
application, a 10 variable neural network model has
demonstrated an 88% success rate in correctly classifving
bond ratings versus 65% for the linear regression model
(2:449).

The problem of assessing organizational effectiveness
is a comp.eX one typically requiring the application of
expert judgment to recognize patterns corresponding to a
given level of perfermance. Variables influencing

or.anizational effectiveness mav involve complex second and




third degiee interaction and are tyvpicallyv large in number
relative to the number of available data points Hence,
conventional statistical redression has not proven
particularly useful as an analvtical means of predicting
arganizational performance. (12:529; 7:1).

Neural networks have teen successfully applied to
similar generalization problems where conventional least
squared estimation methods have vielded poor results (e.z.
bond rating). Such problems share the difficulties inherent
in an organizational performance assessment application;
namelv, a lack of knowledge about the underlving form or the
functional relationships. The success of neurocomputing in
aprlications where the underlying fuctional forms are
unknown, suggests extension of this app-oach to the problem
ot predicting organizational performance mav be a fertile

area of application.




Problem Summary

Civil engineering squadrons along with other base-level
organizations undergo unit effectiveness inspections at
periodic intervals. These inspections are conducted and
documented by teams of experts dispatched from each major
command headquarters. To ensure consistency among
evaluations, each civil engineering squadron within a given
command 13 evaluated by a common team of inspectors.

Berause of the tyvpical size and diversity of civil
=ngineering squadrons, an evaluation team must consider and
individually document the performance of a host of component
bbranches, shops and other characteristics before a composite
unit rating is applied. 1If the expert judgement used to
~ombine these multiple observations into a single agdrecgate
rating is applied consistently across all squadrons, it
follows that an underlying pattern or deterministic
relationship exists between documented observations and
composite ordinal tatings. This research effort seeks to
approximate this underlying relationship with a back-
propagation neural network and to compare the prediction
performance of the network with conventional regression

nodel s,




Summary of Method

This research will use the content and ratings of past
unit effectiveness inspections to train a neural network to
associate component organizational attributes with the
correct ordinal performance rating. Inspection reports will
be divided to provide data for both netwerk training and
testing. The training and testing samples will also be used

to fit and test a regression model.

Collection of Data

Civil engineering unit effectiveness inspection reports
from Strategic Air Command will be the source of the
examples used for network training. The inspection reports
are selected to fall within a finite period (approximately
24 months) and are limited to a single major command to
minimize the influence of external factors which may
diminish the accuracy of the network approximation. This
limitation is designed to ensure uniform application of
rating judgement and ensure relative homogeneity of civil
engineering squadrons in terms of organization and mission

without adversely restricting the sample size.

Processing Data

Each sampled inspection report will be examined. Any
documented observation which may influence composite unit

performance is identified as a candidate predictor variable.

—
0




A linear scale is employed to convert each identified
observation into a value from -3 to +3 based on the report
narrative associated with that observation. For example, if
a report item suggests knowledge of communications security
(COMSEC) is unsatisfactory based on the outcome of COMSEC
tests, the variable corresponding to COMSEC would be
assigned a value of -3. These identified variables form the
input signals to the network. Each variable corresponds to
an input node.

Network approximations are generally robust and tolerant
of substantial error. Hence, any error introduced in the
scoring of borderline cases is not expected to adversely
affect the results. The criteria for scoring individual

observations is provided in appendix E.

Network Training

The evaluation reports are randomly partitioned into a
training set and a testing set. Each set provides a
representative mix of each rating type. Input variable
arravs and corresponding desired outputs from the training
set are used to train a candidate network as described in
chapter II. A variety of architectures and alteration of
network parameters may be required to achieve learning

convergence.

19




Validation and Comparison

Inspection reports from the testing set will be used to
predict the performance of the corresponding squadrons using
both the regression model and the trained neural network.
Testing of each model on data partitioned from the original
sample is necessary to get an indication of the respective
model prediction accuracy.

A paired sample statistical test will determine the
significance of any difference between the number of correct
predictions of the regression model and the trained neural
network. A predictieon accuracy as good or better than that
achieved by regression will establish the neural network as
an alternative measurement and prediction tool for the

organizational sciences and a potentially useful approach to

organizational performance evaluation.

20




IV. Results

Data Collection

Twenty three civil engineering squadron unit
effectiveness inspection reports were obtained from
Headquarters Strategic Air Command. These reports
documented inspections conducted between April 1987 and
March 1989 and included 19 flying wing bases and 4 missile
wing bases. Although possible unit ratings range from
"unsatisfactory"” to "outstanding"”, the reports obtained
included squadron ratings of "marginal” (1), "satisfactory”
{6), and "excellent” (16). Because of the dearth of
outliers, the scope of this research was limited to

discrimination between "excellent” and "satisfactory”

squadrons.

Identification and Scoring of Variables

Each of the remaining 22 reports composing the sample

of "excellent"” and "satisfactory” squadrons were examined
for component attributes which potentially influence the
composite squadron performance rating. Thirty two candidate
predictor variables were subsequently distilled from the
collection of reports. Although some of these variables
were not explicitly addressed in all reports, they

nevertheless correspond to organizational components or

functions common to all squadrons command-wide.

21
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Identification and scoring of some variables was
complicated byv the on-going command-wide reorganization of
operations branch shops to a zonal maintenance concept.
Reports dating from early 1988 began reflecting changes in
the organizational structure of the operations shops and
required careful interpretation and scoring to maintain
~consistency. For example, the new operations shop
organization included a "horizontal construction"” section
which performs functions formerly handled by the old
"pavements and grounds"” section. The performance of this
function under both the old and new organization was
consequently scored under the common variable
"HORIZ".

Another complication arose in scoring of some
borderline cases when the report narrative included both
favorable and unfavorable comments. Such cases required
subjective interpretation to determine the predominant
"tone" of the narrative.

Assigning values to the candidate variables was
otherwise fairly straight-forward. Scoring criteria and
examples are included in appendix E.

To construct a regression model, there must be enough
degrees of freedom available to estimate the mean squared
error variance (19:11). Hence, with 22 cases available (21
with a cross-validation sample withheld), the number of

variables in the model must be limited to 19 or less.

22




The original set of 32 variables was, therefore, reduced to
18 to permit construction and cross-validation of regression
models.

Substantial reduction in the number of variables was
achieved byv consolidating some component functions into a
single parent branch or function. For example, the
variables corresponding to besign, Construction Management,
Environmental & Contract Planning and Real Property were
replaced by a single variable representing the parent
branch, Engineering and Environmental Planning. The
corresponding report narratives include an overall
assessment of this parent branch.

Other variables were eliminated based on low
correlation with the dependent variable and subjective
considerations. For example, the variable representing
vehicle operator care had a very low correlation with the
dependent variable relative to the other predictors (0.02).
This variable was also qualitatively judged less important
as a pnredictor of overall performance.

Revision and consolidation of the variable set
eliminated most of the missing observations. Variables in
the revised set were either explicitly addressed in the
report narratives or were Jjudged "neutral” based upon the
report context. The revised variable set is provided in
Table I. The complete data set with reports and

rorresponding variable values are included in Appendix F.




Because the contents and ratings of specific reports
are privileged, no base or squadron is identified. For
purposes of this research, each report is identified by a
number from 1 to 22. These numbers are arbitrary and do not

correspond to any particular base or squadron ncmenclature,

Table I. Revised Variable Set

Variable Description

DPCWD Disaster Prep\Chem Warfare Defense
TRNG Unit Training Manager

ADMIN Administration\Orderly Room
DET Industrial Engineering

DEU Financial Manager

DEE Engineering & Env Planning
DEF Fire Department

DEH Family Housing

SHELP Self-Help Store

PBEEF Readiness Management

WKCTL Work Control

LOG Logistics\Material Control
PLAN Planning

HORIZ Horizontal Construction
VERT Vertical Construction

ZONE Craftsmen\Zonal Maintenance
UTIL Utilities

SANIT Sanitation\Water & Waste

Partitioning of Samples

Conventional data splitting was not deemed practical
for validation purposes because of the small number of
"satisfactorv” samples (6) and the lack of available degrees
of freedom. Consequently, the cross-validation of split
samples was accomplished in the manner of the PRESS
statistic calculation (15:430). This is accomplished by

withholding one observation from the sample and using the




remaining observations to fit the regression model. This
model is then used to predict the withheld observation.
This procedure is repeated for the remaining observations
selected for validation.

The neural network cross-validation is accomplished in
exactl: *he same manner. The same observations are used to
train the neural network which in-turn is used to predict

the withheld observation.

Selection of Reduced Variable Set

To broaden the comparison of the regression and neural
network models, alternative reduced variable combinations
were selected for obtaining predictions from common input
data. Initially, several stepwise variable selection
methods were used; however, backward elimination, feorward
selection and stepwise methods all vielded different model
compositions. Qualitative judgement was necessary to arrive
at the reduced variable combinations in Table II. Results
of the stepwise analyses are included in Appendix G.

To maintain consistency in the regression - neural
network comparison, each of the reduced set variables were
retained in all cross-validation redressions even though, in
many cases, the regression statistics suggested not all beta
coefficients were significant. Separate optimization
procedures along with construction of separate network

architectures would otherwise have to be performed for each

[g®]
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of the neariy 70 cross-validation regressions. Fixing the
composition of the regression and neural network models

a priori does not diminish the validity of the model to
model comparison. Any differences in model to model

prediction accuracy are readily discerned.

Table I1I. Reduced Variable Sets

Full 18 Reduced Reduced
Var Set 13 Var Set 8 Var Set
DPCWD ADMIN DEI
TRNG DEI DEE
ADMIN DEU DEF

DEI DEE DEH

DEU DEF PBEEF
DEE DEH VERT
DEF PBEEF UTIL
DEH WKCTL SANIT
SHELP LOG

PBEEF HORIZ

WKCTL VERT

LOG UTIL

PLAN SANIT

HORIZ

VERT

ZONE

UTIL

SANIT

Regression Analyvsis

93]

ince the data is limited to two nominal classes
(excellent and satisfactory), the following binarv outcomes
were established for the dependent variable:

1

Excellent

0] Satisfactory




Subsequent cross-validation predictions were interpreted
"excellent” for fitted values greater than 0.5 and
"satisfactory” for fitted values less than 0.5.

The logistic transformation was used in each cross-
validation regression to constrain the response function
(0 < Y < 1) and improve the overall fit. Figure 4 is an

example of the logistic response function.

1.0 ——
T «— ¥ = 1/(1 + EXP(-2))
>
0.0
v
Z = BO + B1¥X1 + B2x%X2 . « . Bnx*Xn
Figure 4. Logistic Response Function

Since unequal error variances are pharacteristic of
models with dependent indicator variables, the logistic
regression coefficients were computed using weighted least
squares. Weigdhted least squares regression provides more
efficient estimates and diminishes the effect of unequal
error variances (15:354-367). Fitted values from initial

unweighted logistic redgressions were used to compute the




welghts. STATISTIX II analytical software package was used

to compute the weighted logistic regression coefficients.

Neural Network Training

The same reports used to fit the cross-validation
regression models were also used to train neural networks.
Presentation of the training examples alternated between

v

"excellent” and "satisfactory’”.
Two output nodes were used to represent the two nominal

classes and the following desired training set outputs were

established for each:

Y1 Y2 Rating
0 1 Excellent
1 0 Satisfactory

The trained network output node with the highest value is
considered "on" and the other "off". Thus, the nominal
class corresponding to the "on" node represents the network
prediction.

Figure 5 is an example of an 8 variable network. In
Figure 5, an array of values representing the 8 variables
enter the network at the bottom. Emerging from the top are
two signals, each corresponding to a nominal class

("satisfartoryv” or "excellent”). For a trained network, one

signal is typically "large” (> 0.9) and the other "small"”
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Initial experimentation with different network
architectures determined that a two i1aver network with N
inputs and N hidden nodes was sufficient to achieve learning
convergaence. Adding nodes to the hidden layer reduces the
required number of cvcles to converge ice but does not speed
convergence in terms of processing time (limitation of
software simulations). Adding a second hidden layer
increases the required cycles to convergence. Evaluation of
the different architectures on a small sample yvielded
identical prediction results. This is consistent with past
experience in similar applications (3:449).

Figure 6 is a plot of the root mean squared error
versus number of training cycles of different network
architectures and variable compositions. Each of the
networks used for the cross-validation trials converged

within 200 presentations.

Results

The reports used for cross-validation predictions
consisted of the six satisfactory reports and six randomly
selected excellent reports. A prediction for each of these
twelve reports was obtained by vithholding each in-turn from
the full sample and using the remaining reports to fit =&
regression model and train a neural network. Each of the
twelve fitted models and trained networks were then used to

predict the corresponding withheld report.
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The full sample of reports used to fit the 8 variable,
13 variable, and 18 variable models are included in Table

III. The reports selected for cross-~validation are

identified in Table IV. The full sample of reports were
balanced to the extent permitted by the degrees of freedom
{e.g. 6 Satisfactory and 6 Excellent reports for the 8

variable model).

Table TII. Full Sample of Reports
{For Regression and Network Training)

Model
Composition Training/Model Fitting Reports
8 Variable Excel: 8, 10, 4, 13, 20, 18
Sat: 5, 9, 12, 17, 19, 22
13 Variable Excel: 8, 10, 4, 13, 20, 18,
3, 7, 16, 21,
Sat: 5, 9, 12, 17, 19, 22
18 Variable Excel: 8, 10, 4, 13, 20, 18,

i4, 1, 11, 15, 6,
2, 3, 7, 16, 21
Sat: 5, 9, 12, 17, 19, 22

Table IV, Reports Selected for
Cross-Validation Predictions

Excellent Satisfactory
3 5
10 9
1 12
13 17
20 19
18 22
32




Twelve cross-validation predictions were ostained for
each of the model compositions (8, 13, 18 variables!. The
raw output for the 8 variable regression and neural network
predictions are summarized in table V. Appendix I is a
cemplztc summary ~f the regrossion and necwork predictions

for the three different model compositions.

Table V. Raw Output (8 Variable Predictions)

(Regression) {Neural Network)
Pred Actual Predicted Actual
Report Y Y Y1 Y2 Y1 ve
8 1.0000 1 0.0627 0.9368 0 1
10 0.0337 1 0.1126 0.8885 0 1
1.0000 1 0.0402 0.9595 0 1
13 1.0000 1 0.2729 0.7291 0 |
20 1.0000 1 0.0305 0.9694 0 1
8 0.0173 1 0.4723 0.5267 0 l
3 0.0167 0 0.9920 0.0081 1 0
9 9.9921 0 0.1006 0.8399 1 1)
12 0.0000 0 0.9936 0.0066 [ J
L7 0.0000 0 0.8366 0.1614 1 0
0.0000 0 0.9%20 0.0080 1 G
22 0.9729 0 0.0463 0.9535 1 0
Analvsis of Data
Table VI summarizes the paired prediction outcomes of
the redression - neural network cross-validations. The
prediction of each withheld report is the product of a
separate trained netvork and fitted regression model. This

table includes the total number of correct predictions out

»f 12 predictions trials for each model composition.

(.
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Table VI. Prediction Qutcome Summary

Ratio of PCT

Test Pair Correct Pred. Correct
8 Variable

Regression

8 variables 8/12 67%

Neural Net

8 variables 10/12 83%
13 Variable

Regression

13 variables 6/12 50%

Neural Net

13 variables 9/12 75%
18 Variable

Regression

18 variables 8/12 67%

Neural Net

18 variables 10/12 83%

While the neural network outperforms the regression
model in each test pair, a statistical test is necessary to
determine if the apparent difference in performance is
significant. Because of the small sample, a paired measures
design was used for the cross-validations and a pairwise
statistical comparison was performed.

Table VII is a summary of the individual prediction
outcomes of the 8 variable test pair. Since the prediction

outcomes are expressed in terms of binary measures
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{1l = success, 0 = failure), it follows that the population
of difference scores of the paired measures are not normally
distributed. Therefore, non-parametric analvsis must be
performed to determine the significance of differences in

the paired prediction outcomes.

Table VII, Prediction Outcomes (8 Variable Pair)

(Prediction Qutcomes)

Report Regression Network

3 axc success (1)} success (1)
10 exc failure (0) success (1)
4 exec success (1) success (1)
13 exc success (1) success (1)
20 exc success (1} success (1)
18 exc failure (0) success (1)
5 sat success (1) success (11}
9 sat failure (0) failure (0)
12 sat success (1) success (1}
17 sat success (1) success (1)
19 sat success (1) success (1)
22 sat failure (0) failure (0)
TOTAL 8 10
MEAN 0.67 0.83

The sign test is a non-parametric alternative to the
paired t-test which requires no distributional assumptions
about the paired samples. To perform the sign test, the

following null and research hypotheses are posited:

Ho: Net - Reg = O (Net = Reg)
Ha: Net - Reg > O {Net > Reg)
where "Net - Reg” is the mean difference of the paired

measures.,




Rejection of the null in favor of the research
hypothesis suggests there is a significant difference in the
prediction accuracies of the neural network and regression
models. Rejection should be based upon the weight of
evidence provided by the level of significance of each test.

STATISTIX II analytical software package was used to
perform the sign test computations. The results of the sign

test are summarized in Table VIIT.

Table VIII. Sign Test Results

One Tail Reject
Test Pair Alt Hyp P-Value Null Hyp
8 ~war Net > Reg 0.250 ves
13 wvar Net > Reg 0.125 yes
18 var Net > Reg 0.313 no

Although specific p-values are subject to
interpretation, the weight of evidence provided by the test
results supports the research hypothesis. Judging from non-
parametric tests in general and these p-values in
particular, the power of the tests are probably weak.

If the paired outcomes could be expressed in terms of "N"
successes or a percentade instead of binary outcomes, the
assumption of normality could be evaluated and more powerful
parametric analysis would be possible.

One way of creating a more powerful test is by
combirning the prediction outcomes. Since each cross-

validation report was tested on three independently fitted
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models (8 variable,

13 variable,

18 variable},

the three

outcomes of each sampled report can be consolidated into a

single observation expressed in terms of N successes out of

M trials or a percentage.
consolidated form,

to determine if a paired t-test can be performed.

With the data in this

parametric assumptions can be evaluated

Table IX

is a summary of the consolidated outcomes of the cross-

validation predictions.

Report

8
10
4
13
20
18
3
9
12
17
19
22

MEAN
VARIANCE

Table IX.

Consolidated Qutcomes

Regression

1/3
1/3
3/3
2/3
3/3
1/3
3/3
0/3
2/3
273
373
173

(1

(1

(1

.33)
.33)
.00)
(0.
.00)
(0.
.00)
(0.
(0.
(0.

67)
33)
00)

67)
67)

.00)
(0.

33)

.611
.118

N

3/3
3/3
3/3
3/3
373
3/3
373
0/3
3/3
2/3
3/3
0/3

a\A,a.\a,\—\A,N,‘ﬂ\A
Ot Ot O i o s b s

(e R ]

N. Network

.00)
.00)
.00)
.00)
.00)
.00)
.00)
.00)
.00)
.67)
.00)
.00)

. 806
. 151

Evaluation of parametric assumptions suggests a_ paired

t-test 1is appropriate.

Judging from the paired sample

variances, the assumption of equal variance should not be

rejected.

indicate no serious departure from normality

Rankit plots of the sample difference scores

(Appendix J).




Based on these parametric assumptions, a paired t-test
was performed using the null and research hypotheses posited
previously. To hedge against invalid assumptions, the non-
parametric signed-rank test was also performed. Table X

summarizes the results.

Table X. Test Results (Consolidated Outcomes)

Paired t test Signed Rank test
Alt Hyp One Tail P-Value One Tail P-Value
Net > Reg 0.0337 0.0469

Findings. Both parametric and non-~parametric analysis
of the consclidated paired outcomes provide strong support
for the research hypothesis. The results indicate a
significant difference between the neural network and
regression performance. The p-values in Table X reflect
less than five percent probability that the improvement of
the neural network over the regression model (81% versus

61%) happened by chance.

Analvsis of Alternate Sample Data

A pairwise comparison was repeated for, an alternate
selection of cross-validation reports. A different random
selection of six Excellent reports were combined with the
six Satisfactory reports and twelve additional cross-

validation predictions were obtained for each model
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composition (8, 13, 18 variable). Outcomes of each of the
model predictions were consolidated as in the original
analysis. The consolidated outcomes are summarized in Table

XI.

Table XI. Consolidated Outcomes (Alternate Sample)

Report Regression N. Network
14 1/3 (0.33) 2/3 (0.67)
1 2/3 (0.67) 1/3 (0.33)
11 3/73 (1.00) 373 (1.00)
15 1/3 (0.33) 2/3 (0.67)
6 373 (1.00) 1/3 (0.33)
2 1/3 (0.33) 1/3 (0.33)
5 3/3 (1.00) 3/3 (1.00)
9 0/3 (0.00) 0/3 (0.00)
12 1/3 (0.33) 2/3 (0.67)
17 3/73 (1.00) 2/3 (0.67)
19 3/3 (1.00) 1/73 (0.33)
22 1/3 (0.33) 0/3 (0.00)
MEAN 0.611 0.500
VARIANCE 0.138 0.111

Findings. Inspection of the composite prediction
accuracies (Net = 50%, Reg = 61%) is sufficient to conclude
that the evidence does not support the research hypothesis

{Net > Reg) for this sample of reports.

Interpretation of Results

The inconsistency between the results of the original
and alternate sample analysis is apparently due to anomalous

sample to sample variation. Closer examination of the
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alternate sample reports reveals that the six Excellent
reports (14, 1, 11, 15, 6, 2) are very close to the six
Satisfactory reports (5, 9, 12, 17, 19, 22) in content if
not output rating.

Based upon the alternate sample report narratives, it
was very difficult to discriminate between Excellent and
Satisfactory reports. This is confirmed by the lower
correlation with the dependent variable and much lower
adjusted R-Squared value (0.0966 in the alternate sample
versus 0.2093 in the original sample).

When the reports are very nearly the same in content,
{as in the alternate sample), the neural network and
regression model both have trouble "deciding” which rating
to assign. Hence, the rating probability approaches that of
a coin toss, 50/50 Satisfactory/Excellent.

Unlike the original sample, about half of the neural
network models trained from the alternate sample converged
to sub-optimal local minima even #fter several attempts with
different weight initializations. In other words, the RMS
error did not reach the desired global minimum because the
network converged to the wrong answer in one or more of the
training examples. This suggests no meaningful
discrimination can be made between the contents of the
Excellent and Satisfactory reports of the alternate sample.

Randomization of samples is intended to diminish the

effect of anomalous sample to sample variation. However,
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with small samples, such variation is still possible even
with random partitioning. Because the Excellent and
Satisfactory reports of the alternate sample are very close
in content, the neural network and regression models are
urnnable to discern any underlying function; hence, no
meaningful discrimination between the two ordinal types can
be made.

By contrast, there appears to be enough discriminating
information in the content of the original sample reports

that an underlying relationship can be approximated. The

fact that the neural network was consistently better than 75
percent (81 percent composite) in correctly predicting
performance ratings for the original sample models (8, 13,
18 variable) supports the assumption that a discernable
relationship exists between the content aﬁd output ratings
for this sample data.

Sources of Possible Error, Although the neural network

was successful in approximating the functional relationship
underlying the reports in the original sample, there are
several potential sources of error in identification and
scoring of report variables which could obscure the
existence of a relationship between report content and
output ratings.,

Any reader of an IG report narrative, who is not
intimately familiar with the unit inspected, will inevitably

introduce some error into the scoring of variables,
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particularly since a discrete value must be applied in
borderline cases.

The omission of external variables not specifically
addressed in the reports could introduce an indirect
confounding effect. For example, factors like host wing
mission, dgross facility square footage, or weather zone
could significantly mitigate the effect of some variables
which would otherwise diminish or enhance the composite
rating.

The results of the alternate sample prediction
outcomes, in particular, suggest that the composite squadron
ratings are a function of more than just the component
performances explicit in the report narratives. There are
certain intangible qualities such as base appearance, work
force morale and "customer satisfaction” which almost
certainly enter into an evaluator’s deliberations but are
not explicitly documented in the inspection reports.

Evaluation of Method. Future refinements to the method

used in this research should be directed toward reducing the
opportunities for error in the identification and scoring of
report variables.

The addition of more rating increments or a continuous
scale could perhaps allow finer discrimination in cases
where the report narrative suggests a borderline rating lies

somewhere between existing rating increments.




Perhaps a better way to handle such borderline cases
would be to score the variable iow on the existing
observation and then create a duplicate observation with the
variable in question scored high.

External variables for which data is available should
be included in the models (e.g. host wing mission, gross
facility SF, weather zone). A variable corresponding to
host wing mission was omitted in this case because all four
cf the missile wing bases in the sample were rated
Excellent. Without a larger balanced sample of missile wing
reports, such a variable would have been unduly weighted in
favor of an overall Excellent rating obscuring the effect of
the other predictors.

Many additional variables could have been extracted
from the IG reports and used for neural network training,
but the variables were not present in the majority of the
*
narratives. For example, the refrideration shop was
explicitly addressed in only 6 of 22 narratives.
Refrideration shop was one of the variables eliminated
hecause of its narrow input.

Implementation of the full set of 32 variables
identified originally, yielded a neural network prediction
accuracy of 67 percent during cross-validation. The
diminished performance is attributed to the confounding
effect nf the large number of missing observations (114
missing observations) which had to pne scored "neutral”™ on

the corresponding variables.




V. Conclusions

Results

The successful application of any function
approximation tool requires that there be an underlying
relationship between predictors and the dependent variable.
Where the existence of an underlyving relationship could be
established between report content and output ratings, the
neural network significantly outperformed regression models
in correctly predicting squadron performance during cross-
validation trials (81% versus 61%). These results
demonstrate that neurocomputing can be successfully applied
in an organizational performance assessment application
where the existing relationship between organizational
components and composite performance is unknown.

The suncess of the neural network in discerning any
relationship at all i1s quite remarkable given the relatively
small sample size and opportunities for error in
identification and scoring of wvariables.

Examination of the report contents and results of the
analyvses sugdgests anyv existing relationship is subtle and
the funrction of additional extrinsic variables not

identified in the data.

Neural Net versus Redression. The improvement in
performance of the neural network over redgression is

attributed to the fact that redgression is onlyv valid w«where
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the general functional model is known. For a neurocomputing
application, the functional relationship need not be known.

Unlike the neural network, which negotiates a complex
error terrain in carrying out function approximations, the
regression model approximation is analogous to a single
ridge forming a boundary between "excellent" and
"satisfactorv" samples which is made steeper by the logistic
transformation. For samples that do not lie squarely on
either side of this ridge, random variation can position
them "off-center” in the wrong direction, tipping the
balance in favor of "excellent" or "satisfactory" regardless
of the actual output rating.

The advantage of neurocomputing over regression should
be even more apparen® in broader applications involving more
than two nominal classes. With sufficient training
examples, a suitable network architecture can be employed to
achieve the desired prediction accuracy.

Bv contrast, the utility of a regression model for
applications involving multiple classes is limited. Because
multiple classes must be expressed in terms of a single
dependent variable, the precision of such an approximation

can only diminish as the number of nominal classes increase.

Implications of Research

This research demonstrated the utility of

neurocomput ing as an alternative approach to performance
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measurement and prediction previously vnavailable in the
organizational sciences.

Prediction of organizational effectiveness is a complex
problem involving subtle relationships among organizational
components. Such relationships can only be crudely
approximated, if at all, with conventional least square
estimation methods. Neurocomputing provides a means to
approximate these relationships and use them to
independently predict the rated effectiveness of an
organization.

Applications. With a definitive set of variables,

appropriate scoring criteria, and sufficient training
examples, this technology could have immediate application
as a management tool for squadron commanders. A commander
could use a trained network to gain insight into the
composite effectiveness of his squadron relative to other
squadrons command-wide. Such a tool would provide a means
to gauge the effect of alternative decisions favoring
conflicting squadron objectives or component functions. A
commander could then allocate resources toward each
objective or function in a way that maximizes overall unit
offectiveness.

This technology could also provide a useful supplement
to subjective evaluations conducted during unit
effectiveness inspections. Neural network predictions could

be used to establish "bench mark” or "baseline" ratings to
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heln experienced evaluators gauge the consistencyv of their
rating judgement, ensuring a fair and uniform application of
rating judgement from squadron to squadron.

Inexperienced evaluators could also benefit from the
collective "experience” of the neural network. This would
be particularly useful as a means to help leaven out the
erratic application of judgement which can be characteristic
2f an evaluation team in transition, undergoing radical
changes in composition.

As new evaluations are performed, a neural network can
be retrained, incorporating the new knowledge. This way,
the "knowledge base" evolves with each new experience. This
application of neurocomputing should be regarded as a
supplemental tool since network predictions reflect the
"bias” of previous inspections and do not consider other
extrinsic and intangible factors.

In the organizational sciences, this approach to
effectiveness measurement mayv prove to be a useful
alternative to conventional least square estimation methods
or theory- based mathematics (e.g. Data Envelopment
Analysis). A trained network could be used to perform
"sensitivity analysis” of the predictor variables. Input
values can be varied or selected input nodes disabled to
determine the relative influence of predictors. Such an

analysis rcould provide some insight into the relative




importance of variables within the control of the manager as

well as external factors bevond his control.

Recommended Research

Follow-on research should be considered to determine
the ultimate capability of neurocomputing as a prediction
tool for organizational performance. Collection of
evaluation data should be in sufficient quantities of more
than two ordinal output ratings. A broader set of variables
should be incorporated to include external factors for which
data is available.

Future research with major commands could ask
evaluation team members to identify appropriate variables
which influence squadron performance. They could also
develop criteria for scoring the variables., This should
result in a more definitive set of variables and accurate
interpretation of report narratives.

Sensitivity analysis should be considered in any future
research. This would not only provide insight into the
relative importance of specific variables but would also
demonstrate the robustness or error tolerance of the network
approximation.

There are other neurocomputing techniques different
from back-propagation which could be explored in an

nrganizational assessment application.
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The Hopfield network has been used as a content-
addressable memory. Such a network could be used to match
an un-rated organization with the closest stored "exemplar”
organization.

The Carpenter/Grossberg network has been used to
segregate or "cluster" similar input patterns. This type of
network could be used to explore where natural boundaries

between ordinal ratings should lie.

Conclusion

Neurocomputing is a new, rapidly emerging technology
that has only recently been explored in applications beyond
signal, speech and image processing. This research
demonstrates a successful application of neurocomputing as
an organizational performance assessment tool.

In the organizational sciences, this approach to
effectiveness measurement and prediction can be a useful
alternative to least squar¢ estimation methods. Continued
research will determine the ultimate capability of

neurocomputing in practical management applications.
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Appendix A: Single Laver Perceptron
(Ref. 13:45-47; 18:154-159)

A conventional multiple regression model uses beta
coefficients to transform input values (predictor/indicator
variables) into an output value (dependent variable). This
gives rise to the ’black box’ analogy where the regression
function is regarded as a ’'black box’ that receives the
input variables. After ’'turning the crank’ the value of the
dependent variable emerges.

This same analogy applies to a perceptron. Signals
corresponding to input variables enter the ’'black box’' and
signals emerging correspond to a nominal classification. In
this case the ’black box’' consists of a layer of processing
elements (Figure 7). Each processing element receives input
signals and transmits an output signal. The path from each
input signal to each processing element has a corresponding
connection strength or "weight"”. The value of each
processing element output signal is determined by a
mathematical formula (Figure 8) that defines the element’s
output as a function of the input signals and corresponding
connection weights. These connection weights can be
regarded as little "beta coefficients” that evolve over time

with repeated exposure to training input-output examples.
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Figure 7. Single-layer Perceptron
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Figure 8. Ha:d Limiting Function




Appendix B: The Exclusive-Or Parity Problem
and Linear Separability

X1
input Y output
X2
Y = f(inputs, connection weights)
+1 class A

-1 class B
///’

A
A
/<; =
- — decision boundary

Shown above is a single layer perceptron that
classifies an input vector (X1,X2) into two
classes denoted A and B.

'
.-l.
n

[

L etevwn.on NDe~vei Ly Reeion (from 13:45).

]
(Yol

In performing classification tasks, single-layer

perceptrons can only discriminate among linearly separable

classes. [n other words, in deciding whether an input

belongs to one of two classes (denoted A or B), the
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perceptron forms two decision regions separated by a
hvperplane in the space spanned by the inputs (figure 9).
The exclusive-or (XOR) parity problem is an example of
a classification problem with meshed decision regions where
the classes cannot be separated by a single hyperplane (or
line in two dimensional space). The parity problem is one
in which the output required is 1 if a binary input pattern
contains an odd number of ls and 0 otherwise. The XOR
problem is a parity problem with input patterns of size two

({13:45-46; 18:330-335).

Input pattern Output pattern
X1 Xz Y Class
0 0 0 (B)
0 1 1 (A)
1 0 1 (A)
1 1 0 (B)

A single layer perceptron cannot solve this problem because
the classes cannot be separated by a single line (figure 10;.
The addition of multiple layers with hidden units allows
the perceptron to form convex or closed regions in the space
spanned by the inputs permitting separation of the classes.
Thus, in the case of the XOR problem, a perceptron can learn
to discriminate between the two classes (figure 11) via back-

propagation.
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Figure 10. XOR Decision Region of Single-layer Perceptron
(from 13:46).
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Aappendix C: Generalized Delta Rule
{(from 18:322-328)

The generalized delta rule is a means of incrementally
modifving network connection weights to reduce the global
output error during each training presentation. The
generalized delta rule says the weight of each connection
should be changed by an amount proportional to the product

of the processing element output signal, Xi, and an error

signal, :gj, available to the unit receiving that output.
In svmbols, Y3
Weight change = AWij = 1 &5« xi
where 7CL
q = gain term (learning rate) Vﬁj
.Sj = error signal downstream of
Xi = output signal from unit 1

Determination of the error sisgnal starts with the output

units. For an output unit, the error signal is given by
Sj = (Dj - Yj) % F'z)
where
Dj = desired output
Yi = actual output
z = net input signal
F'(z) = derivative of the transfer function

with the sigmoid functirn,

F'tz) = Yj * (1 - Yj)

pol]
o}




thus

Sv)’ = (Dji - YY) ¥ Yj x (1 - Yj)

The error signal for hidden units is determined recursively
in terms of the error signal of the units in the forward
network laver to which it sends input and the corresponding
~onnection weilght. That 1is,

&
with the sigmoid function,

S

Friz) ¥ TSk * wik)

Xj ok (1 - X§) ¢ TSk * Wik)

where
Xj = output of unit j
<Sk = error signal in forward layver
Wik = connection weight from unit j to k

This method of distributing error and updating weights is
central to the back-propagation learning aldgorithm (see
appendix D). Ref. (18:322-328) provides a good descripntion

and mathematical derivation of the ¢eneralized delta rule.

~1
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Appendix D: Back-Propagation Training Algorithm
(from 13:49)

The back-propagation training alcorithm is a gradient
descent technique which employs the generalized delta rule
to minimize the mean square error between the actual network
cutput and the desired output (see appendix C). Each neuron

{processing element) uses the sigmoid function.

Algorithm Steps:

Step 1. Initialize Weights and Threshold Values:
Set weights and thresholds to small random values for

all nodes and all connections (e.¢. between -0.1 and +C.1).

Step 2. Present Input and Desired Outputs:

From the training examples, present an input arrav
representing the N input varia'les (X1, X2, X3, . . . Xn}
along with the M desired output variables (D1, D2, D3
Dm). The desired output array is specified by setting the
output values to zero except for the output representing the
desired classification which is set to 1. The M output

units correspond to the M classes.

Step 3. Calculate Actual Outputs:
I'sing the sigmoid function, the output signals from the
units in the first and succeeding lavers are calculated in

turn until the output array is determined (Y1, Y2, ... Ym).

h8




Step +. Adapt Weights:

Starting at the output laver and working back to
previous lavers in turn, the weights are adjusted as
follows:

Nijeeel) = Wijee) o+ F]x S« xi’
where Wijit) 1s the connection weight from unit 1 to unit 3
at time t, Ni’ is the signal from unit 1, 17 is a gain term
and f;j is an error term for unit j.

Fer output units,

Sio= Dio- Vi) o*Yj oK (1 - Yj)
where

Dy o= i.- iread output

Vi = acrual output

For hidden units,
Si= ik 1= ¢ TSk x wik)
where 5:(¢5k * Wik) is summed over all K units in the laver
downstream unit j.
Internal unit thresholds are adapted in a similar manner,
Wilt+1) = Wjilt) + Vl*S.j

where Wj 1s the internal threshold for unit j.

Step 5 Check for termination criteria.
If the RMS error is small enough (typically < 0.1} then
stop training. Otherwise, repeat by going to step 2.

n
RMS Frror = SQRT( (DI ~ ¥i)"2 /n ).
1




NOTE: The addition of a momentum term to the weight update

can sometimes speed convergence and help avoid local minima.

Momentum term = alpha*(Wij(t) - Wij(t-1))
where
0 < alpha < 1.
Weight changes are thus smocthed as follows:
Wijltel) = wijie) + V]x &5 x xiv

+ alpha*(Wij(t) - Wij(t-1)).
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Appendix E: Scoring Criteria

L]
Input variables are assigned values based on the following
criteria:

Qutstanding (+3)

Overwhelming balance of comments reflects singular
performance. Includes adjectives such as "outstanding” or
"superior"”.

Example, Variable DEH:

"Family Housing Management continues to provide

superior service to their customers. The level
of effort a~d involvement is a model for the
command . . . "

Excellent (+2)

Overwhelming balance of comments suggests performance
bevond satisfactory. Includes adjectives such as "superb",
"excellent”, "exceptional"”, "exemplary".

Example, Variable DEH:
"The Family Housing Management Branch provides
superb support to the wing. A professional
staff is providing customers useful information,
particularly in housing referral . . .°

Satisfactory {three subsets):

Favorable (+1)

Comments are favorable in tone. Contains
few 1if any unfavorable observations. Any unfavorable
nbservations are off-set bv overwhelming balance of
favorable comments.

Example, Variable DEH:
"Personnel in the Military Family Housing Branch

are providing efficient, courteous service to
all customers "
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Neutral (9)

Not mentioned/Omitted from report, or consists
primarily of declarative sentences which do not reflect
performance bevond what is expected. Favorable comments are
off-set by unfavorable ones.

Example, Variable DEH:
“"The Family Housing Management Branch provides

adequate support to the base and other military
families . . ."

Unfavorable (-1)

Balance of comments are unfavorable in tone up to but
not including marginal or unsatisfactory
observations.

Example, Variable DEH:

"The Family Housing Management Branch provides
satisfactory support to the wing. The white
exterior of the housing office 1is aesthetically
pleasing, but the interior floor plan is not
conducive to customer service . . . Base housing
area appearance 1is suffering and a means of
correcting this situation is underutilized.

Marginal (-2)

Comments are unfavorable in tone to include
descriptions of "marginal” performance.

Example, Variable DEH:

"The Housing branch is marginal for sustaining
exc2ssive housing unit downtime, failure to ensure
housing units receive effective maintenance, and
~ontinuing a trend of poor area appearance B

'nsatisfactory (-3)
Comments are unfavorable in tone to include
deseriptions of "unsatisfactory” conditions.,

fFample, Variable WKCTL:
“Numerous discrepancies were noted within production
control . . . the .job order delinquency rate is 36
percent, THTS IS AN UNSATISFACTORY CONDITION . . .7

62




{13 Variables)

Set

Data

Appendix F:
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Appendix G:

Variable Selection Analvsis

1. SAS output for Stepwise Regression Procedure:

STATISTICS FOR ENTRY:
= 1,18

VARIABLE TOLERANCE
DPCWD 0.954122
TRNG 0.775372
ADMIN 0.99064
DEC 0.779936
DEE 0.777264
DEF 0.901046
DEH 0.994093
SHELP 0.816171
WKCTL 0.995276
LOG 0.94422
PLAN 0.833871
HORIZ 0.951211
VERT 0.941929
ZONE 0.825252
UTIL 0.57931
SANIT 0.780771

MODEL
R¥%2

0.5335
.5261
.5643
.5232
. 5564
.5529
.5554
.3250
.5294
.5218
.5458
.5229
. 5296
. 5325
5347
.5216

OO OO OCODOOOCOLDOOOOCQ

STEP 3
F PROB>F
0.4597 0.5064
0.1690 0.6858
1.7629 0.2009
0.0599 0.8095
1.4095 0.2506
1.2597 0.2765
1.3657 0.2578
0.12738 0.7249
0.2975 0.5921
0.0083 0.9282
0.9592 0.3404
0.0482 0.8288
0.3062 0.5868
0.4187 0.5257
0.5065 0.4858
0.0000 0.9999

NO OTHER VARIABLES MET THE 0.1000 SIGNIFICANCE LEVEL FOR ENTRY

SUMMARY

VARTABLE Y2

STEP

1
2

STEP

—t

]

OF STEPWISE REGRESSION
VARIABLE NUMBER
ENTERED REMOVED IN
DEI 1
PBEEF 2
VARIABLE
ENTERED REMOVED F
DET 11.4969
PBEEF 6.22000
65

PROCEDURE FOR DEPENDENT
PARTIAL MODEL

R¥x2 R*x%2 ap
0.3650 0.3650 701
0.1566 0.5216 322

PROB>F

0.0029

0.0220




2. SAS Output for Backward Elimination Procedure:

BACKWARD ELIMINATION PROCEDURE rOR DEPENDENT VARIABLE Y2

STATISTICS FOR REMOVAL: STEP 11

DF = 1,13

PARTIAL MODEL
VARTIABLE R¥x2 R¥%2
DPCWD 0.0851 0.6789
TRNG 0.0921 0.6719
DEI 0.0530 0.7111
DEE 0.0709 0.6931
DEF 0.1576 0.6064
PBEEF 0.1026 0.6615
HORIZ 0.0834 0.6806
VERT 0.0599 0.7041

ALL VARIABLES IN THE MODEL ARE SIGNIFICANT AT THE 0.10 LEVEL

SUMMARY OF BACKWARD ELIMINATION PROCEDURE FOR DEPENDENT
VARIABLE Y2

VARIABLE NO. PARTIAL MODEL
STEP REMOVED IN Rxx2 R¥*2 C(P) F
1 ADMIN 17 0.0008 0.9245 17.03 0.0319
2 ZONE 16 0.0017 0.9228 15.1 0.0909
3 DEH 15 0.0152 0.9077 13.7 0.9822
4 LOG 14 0.0172 0.89041 12.4 1.1183
3 PLAN 13 0.0162 0.8742 11.05 1.0371
6 SHELP 12 0.0166 0.8576 9.72 1.0564
7 WKCTL 11 0.0270 0.8306 8.80 1.7061
8 SANIT 10 0.0287 0.8020 7.96 1.697
9 DEU 9 0.0237 0.7783 6.91 1.3152
10 UTIL 8 0.0142 0.7640 5.48 0.77C0Q
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3. S$SAS Output for Forward Selection Procedure:

STATISTICS FOR ENTRY: STEP 11

DF = 1,10
MODEL
VARIABLE TOLERANCE R¥xx2 F PROB>F
DEU 0.403758 0.7878 0.2292 0.6424
SHELP 0.542032 0.7830 0.0005 0.9819
WKCTL 0.586084 0.7030 0.5307 0.4830
LOG 0.613619 0.7834 0.0198 0.8908
PLAN 0.476947 0.7880 0.23635 0.6373
ZONE 0.264332 0.7877 0.2212 0.6482
UTIL 0.414095 0.7892 0.2949 0.5990
SANIT 0.258208 0.7895 0.3090 0.5805

NO OTHER VARIABLES MET THE 0.45 SIGNIFICANCE LEVEL FOR ENTRY

SUMMARY OF FORWARD SELECTION PROCEDURE FOR DEPENDENT
VARIABLE Y2

VAR NO. PARTIAL MODEL
STEP ENTERED 1IN R¥%x2 R¥x2 C(P) F
1 DEI 1 0.3650 0.3650 7.31 11.50
2 PBEEF 2 0.1566 0.5216 3.22 6.22
3 ADMIN 3 0.0427 0.5643 3.50 1.76
1 DEH 4 0.0628 0.6271 2.98 2.86
3 HORIZ 5 0.0299 0.6570 3.77 1.40
6 DEE 6 0.0173 0.6743 5.08 0.80
T DEF 7 0.0175 0.6919 6.38 0.80
8 DPCWD 8 0.0259 0.7177 T.34 1.19
9 VERT 9 0.0198 0.7375 8.55 0.90
10 TRNG 10 0.0455 0.7830 8.72 2.31




Appendix H: Neural Network Simulation Program

program cenetl8x(results, zerowt, train, error);

{
Pascal program to implement back-propagation neural network
learning. Program simulates a two layer perceptron with
18 inputs, 18 hidden nodes and 2 outputs. Program includes
random or sequential presentation of training examples and
a momentum term in the weight updates.

Written by F. Baugh, June 1989
}

var
Z, { weighted sums of inputs plus threshold value }
eta, { gain term (learning rate) }
alpha, { momentum coefficient }
count, { number of iteration }
total, { total iterations }
step, { iterations per stepped output }
dsum, {
sum, { place }
old, { holders }
err, { }
errl, [ error output nrode 1 }
err2, { error output node 2 }
maxerr, { maximum squared error }
sumerr, { cumulative squared error }
maxroot, { maximum root squared error }
rms, { root mean squared error }
cvcle,
res:
real;
S‘
example,
i,
J
It,
Py
n:
integer;
L,
m,
q:
char;
test,

train, { training set data file )}
zerowt, { initial weights data file }
{
{

error, RMS error output file }
results: “trained weights” output file )}
text,
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w: array[19..38] { threshold weights }
of real;

wl: array[1..18,19..36) { layer 1 connection weights }
of real;

w2: array[(19..36,37..38] { layer 2 connection weights }
of real; .

delt: array[19..38] {thareshold momentum wt change}
of real;

deltl: array[1..18,19..36]}] { layer 1 momentum wt change }
of real;

delt2: array{19..36,37..38]{ layer 2 momentum wt change }
of real;

x: array[19..38] { output, node j }
of real;

d: array[19..38] { error term, node j }
of real;

vt: array[1l..50,1..2] { output ’y’, training set }
of real;

Xxt: array(1..50,1..18] { input ’'x’, training set }
of real;

yout: arrayl[l1..50,1..21} { prediction, trained network}
of real; { yout = f(x1, x2,..., x18) }

[ input/output arrays are dimensioned to accomodate up to
50 examples. Dimensions may be changed to include more
examples if needed.}

label start;
label stop;

BEGIN

clrscr;

{ message )

writeln(’This program simulates a two layer perceptron with
18 inputs, ');

writeln(’18 hidden nodes, and 2 outputs. Network learning
includes ');

writeln(’cyclic presentation of inputs and momentum. ')
writeln{' ');

writeln{(’last revision: 1800, 4 Aug 89 ');

writeln(’ ');

writeln{’'press <(RETURN> to continue’);

readln(q);

{ initializing parameters }

assign(results,'outwtl18.3');
assign(zerowt,’zerowt.al'’);
assign(train,’trainli8.dat’);
assignlerror,’'error3.dat’);
rewrite(results);
rewrite({error);
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reset(zerowt);
reset(tra.n);
eta := 0
alpha

count

1 := ’r’;
n =z 1;

.9
0.6;
O .

- o

{ initialize weights )}

{ reading threshold weights (nodes 19 to 38) 1}

J = 18;
while jJ < 38 do
begin

J =3+ 1

readln(zerowt,w[j});

delt[j] := 0;

writeln(’Initializing threshold weights
clrscr;

end;

’

yJ)s

{ reading “ayer 1 connection weights |}

i 1= 0;
while i < 18 do
begin
i o= i+,
J = 18;
while j < 36 do
begin
J = j+1;
readln(zerowt,wlf[i,jl);
deltl(1i,9] := 0;
writeln(’Initializing layer 1 connection weights
R
clrscr;
end;
end;

{ reading layer 2 weights }
i 1= 18;
while 1 < 36 do
begin
i =1+ 1;
J = 36;
while j < 38 do
begin
J o= g+l
readln(zerowt,w2{i,jl);
delt2[i,j} := 0;
writeln(’'Initializing layer 2 connection weights
v J )
clrscr;
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end;
end;

{ reading training data }

i := 0;

while i < 50 do { 50 = max number of training examples }
begin
i 1= i+1;

read(train, yt{i,1}, ytl(i,21, xt[i,1], xt(i,2],
xt{i,3), xt(i,4], xt[i,5], Xt[iye]y xt{i,7], xt[i,8],
~t(i1,9), xt{i,10], xt{i,11}, xt(i,12], xt{i,1371, xt{i,141,
xtfi,15]}, xt[i,16]), xt[i,17], xt[i,181);

sum := yt[i,1]+yt(i,27%;
if sum = 1
then
example := 1,

writeln(’'reading training set ’,i);

clrscr;

end;
start:
clrscr;
writeln(’ ');
writeln('Data set includes ',example,’ examples’);
writeln(’ ’);
writeln(’%*xx* Network Menu ¥¥x¥xkxx');
writeln(’ ');
writeln(’ Options:’};
writeln(' ');
writeln(’ To implement network learning, vress
<RETURN> ") ;
writeln(’ ');
writeln(’ To test the net with existing weights,
enter "t",<RETURN>');
writeln(’' ');
writeln(’ To save weights enter "save”,<RETURN>’);
writeln(' ');
writeln('’ To modify learning parameters enter
"m"” ,<RETURN>’ ) ;
writeln(' *);
writeln(’ To stop, enter "exit",<RETURN>’);

writeln(' ');

readln{q);
if g = e’
then
goto stop;




if q = 'm’
then
begin
clrsecr;
writeln(’ ’);
writeln(’
Current’);
writeln(’Option Description
setting *)s
writeln(’ ');
writeln(’ 1 learning mode >
writeln(’ (r = random )
’);
writeln(’ {c = cyclical)
’);
writeln(' ');
writeln(’ ');
writeln(’ 2 learning rate >
',eta:2:2);
writeln(’ ');
writeln(’ ’);
writeln{’' 3 momentum coeff >
',alpha:2:2);
writeln(’ ');
readln(p);
if p =1
then
begin
write('enter desired learning mode: ’};
readln(l);
writeln(’ ’};
if 1 = ¢’

then
writeln(’presentation of training
examples will be cyclical’)
else
vriteln(’'presentation of training
examples will be random’);

end;
if p = 2
then
begin
write('enter desired learning rate: ');

readin(eta};

writeln(’ ');

writeln{’learning rate = ’',eta:2:2);
end;

~)
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then
begin
write({'enter desired momentum coefficient:
readln(alpha);
writeln(’ ');
writeln(’learning rate = ’,alpha:2:2);
end;
goto start;
end;
,S,
begin

{ print trained weights to file |}
writeln(’saving weights’):

{ threshold weights }

J = 18;

while j < 38 do
begin
Jg o= J o+ 1;
writeln{results,wijl:4:41);
end;

layer 1 connection weights }

1 = 0;
while 1 ¢ 18 do
begin
i 1= 1+1;
Joi= 185
while j < 36 do
begin
Joi= g+l
writeln{results,wl[i,jj:4:4);
end;
end ;

{ laver 2 connection we¢ights 1}

1 = 18,
wh.le 1 < 36 do
begin
i 1= 1+ 1y
J 1= 36,
while j ¢ 38 do
begin
J o= g+l
writeln{(results,w2li,j]:4:3);
end ;
end ;

Lot start
o1yt

’);




{ end weight save }

if g = 't
then
begin

{ calculation of outputs }
writeln(’predicted output = f(x1l, x2, x3, ... x18)");
writeln(’ ’);
writeln(’ ')

writeln(’From input data: Predicted:’);
writeln(’ ’);
writeln(’'Yl Y2 Yi Y2 ')

writeln(’' 7);

{ Forward calculation of neuron outputs for each
training set input vector }

k := 0;

while k < example do
begin
k := k+1;

{ layer 1 outputs }

J 1= 183
while j < 36 do
begin
j o= g+t
i = 0y
sum := 0;
while i < 18 do
begin
i 1= i+1;
sum = sum + wil[i,jl*xtl(k,1i1:
end;
z = sum + wl[jl;
x[J] := 1/{1 + exp(-2z)i;
end;

¢

¢ layver 2 outputs |}

J 1= 363
while j < 38 do
begin
J o= g+l
1 1= 18;
sum := 0;
while 1 ¢ 36 do
begin
1 1= i+l

sum := sum + w2{i,jl*x[1};




end;

z = sum + wiJjl:
x[j] 1= 1/(1 + expl{-z));
end;

writeln(yt[k,11:4:0," ’,yt{k,2]1:4:0,
Toxf371:4:4,7 7 ,x(381:4:4);
end;
writeln(’ *);
writeln{’'press <(ENTER> to continue’);
readln(q);
goto start;
end;

{ prompting for ’total’ and ’'step’ 1}

write(’enter total number of iterations: ')});
readln(total);

writeln(¢’ '),

write(’enter number of iterations per output: ’};
readln(step);

writeln(’ ');

writeln(’'total = ’,total:4:0);

writeln(’step = ’,step:1:0);

writeln(’ ’');

writeln(’ ’);

writeln(’ ')

if 1 = "¢’
then
begin
writeln(’ Training RMS
writeln('’ Iteration sweep error

error');
writeln(’ ’1};
end

else

begin
writelnt(’ RMS RMAX’ )
writeln(’ Iteration error error’ ):
writeln(’ 7);
end;

{ Trainineg the Net )

while count < total do
Bedgin
count =z count + 1;

-1
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{ begin presentation of training examples }

if 1 = ’¢’
then
begin
k 1= n;
if n = example + 1 { cyclie
selection }
then
k 1= 1;
n := n + 1;
end
else
k := trunc(example*random) + 1; { random

selection }

{ forward calculation of neuron outputs }

{ laver 1 outputs }

J 1= 18;
while j < 36 do
begin
J o= g+l
i = 0;
sum := 0;
while 1 < 18 do
begin
i 1= 1i+1;
sum := sum + wifi,jl¥xt{k,1i1;
end;
z := sum + wljl;
x[J] = 1/{(1 + exp(-z));
end;

{ layer 2 outputs }

J = 36;
while j < 38 do
begin
J 1= j+1i;
i 1= 18;
sum := 0;
whiie 1 < 36 do
begin
i 1= 1+1;
sum = sum + w2[i,jl¥xlil,;
end;
z = sum + wijl,
“[j) = 1/(1 + exp(-2));
end;




{ adapting weights (backward error propagation) |}

{ output error & threshold weight update }
L 1= 0;

J 1= 36;

while j < 38 do

Jj1 + eta*d[j] + alphaxdelt[j];

fJ],
x[jI*(l-x[(j1)*(vtik,il-x[j1);
wl
= wlij] - old;

{ hidden layver error & threshold weight update }

i := 18;
while 1 ¢ 36 do
begin
i o= i+1:
dsum := C;
J = 36;
while j < 38 do
begin
J 1= g+l
dsum := dsum + d[jl*w2{1i,j];
end;
old := wlil;
dii] := x[il®{l - x[i])*dsum;
w{i]l := wli] + eta*d{i]l + alphaxdelt{il];
deltli] := w{i] - old;
end;

{ hidden layer connection weight update }

i 1= 18;
while 1 ¢ 36 do
begin
i 1= 1i+1;
J 1= 363
while j < 38 do
begin
J o= g+l
old := w2[i,.i};

w2[i,jl 1= w2[i,j] + eta*d[jl*x[i] +
alphatdelt2(i,.j];
delt2{1,j) := w2[i,j] - old;
end;
end;

-1
-1




{ input layver connection weight update }

i 1= 03
while i < 18 do
begin
i 1= i+1;
j := 18;
while j ¢ 36 do
begin
J 1= g+l
old := wlfi,jl;
wlfi,j] := wil[i,j] + etaxd[jl*x[i] +
alphaxdeltl{i,jl;
deltlfi,jl := wl[i,j} - old;
end;
end;

{ calculating outputs at each stepped pass |}
res := count/step;
if frac(res) = 0
then
begin
k := 0,
maxerr := O;
sumerr := 0;
while k < example do { calculation of
training set outputs
begin
k := k+!l;

{ layer 1 outputs }

j = 18;
while j < 36 do
begin
J 1= j+lg
i = 0,
sum := O}
while i1 < 18 do
begin
1 1= i+l
Sum := sum +
wl{i,jl*xtik,1];
end;
z := sum + w(Jl;
x[jl := 1/(1 + expl-2));
end;




{ layer 2 outputs }

s := 0;
J = 36;
while j < 38 do
begin
s := s+l;
J 1= J+1;
i := 18;
sum := 0;
while 1 < 36 do
begin
i o= i1+1;
sum := sum + w2{i, jl*x[1i]1;
end;
z := sum + wl{j};
x[jg1 1= 1/(1 + expl-2));
youtl{k,s] := x(j1;
end;

{ calculation of squared error }
errl :!= sqriyoutlk,1]) - ytlk,1]1);
err2 := sqr(youtlk,2] - yti{k,21);

if errl > err?2

errl

o
"3
)
"

o
o]
e

1}

err?;

{ maximum error !}
if err > maxerr
then
maxerr := err;

{ cumulative error }
sumerr := sumerr + errl + err2;
end;

{ end calculation of entire training

{ calculating RMS error at each stepped
iteration |}

cycle := trunc({count/example);
rms := sqgqrt{sumerr/(examplex2));
maxroot := sqrt{maxerr);
if 1 = ’¢’
then
begin
writeln(’ ', count:7:0, ' '
',rms:4:4,"’ ', maxroot:4:4);

writeln{error, count:7:0, '’ ',
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1 1]

cvele:7:0,°
end
else
begin
writeln(’
,rms:4:4,’ ', maxroot:4:4};
writeln(error, count:7:0,
,rms:4:1,’ ', maxroot:4:4);
end;

!

,count:7:0,
H

end;
{ end stepped iteration }

End;
{ End network training }

writeln(' ’);
writeln{(’Do you want to continue?’);

readln(q);
if q = 'y’
then

goto start;

stop:
writeln(’do you want to save weights ?');
readln(q);
1f q = ,y.’
then
begin
{ print trained weights to file |}
writeln(’'saving weights’);

{ threshold weights }

J = 18;

while j ¢ 38 do
begin
Jj o= j o+ 1;
writeln(results,w[jl:4:4);
end;

{ layer 1 connection weights }

?

i := 0;
while 1 < 18 do
begin
i 1= i+1;
J = 18;
while j < 36 do
begin
J 1=+l
writeln(results,wl{i, jl:4:
end;
end;
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{ layer 2 connection weights }

i := 18;
while 1 < 36 do
begin
i =1+ 1;
J = 36;
while j < 38 do
begin
J 1= Jg+i;
writeln(results,w2[1,j]:4:4};
end;
end;
end;

{ end weight save |}

close(results);
close(zerowt);
close(train);
close({error);

END.

{ Frank Baugh }
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Appendix I: Output from Cross-Validation Trials

8 Variable Model

Actual {Neural Net Prediction) {Reg Pred)

Report Rating Y1 Y2 Y

8 exc 0.062662 0.936842 1.0000
10 exc 0.112565 0.888472 0.0337
3 exc 0.040213 0.959503 1.0000
13 exc 0.272907 0.729138 1.0000
20 exc 0.030481 0.969430 1.0000
18 exc 0.472339 0.526682 0.0173
5 sat 0.991958 0.008054 0.0167
9 sat 0.100630 0.899928 0.9921
12 sat 0.993596 0.006590 0.0000
17 sat 0.836645 0.164449 0.0000
19 sat 0.991960 0.007992 0.0000
22 sat 0.046344 0.953524 0.9729

13 Variable Model

Actual (Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 Y

8 exc 0.034160 0.967113 0.0000
10 exc 0.285186 0.715311 0.0141
4 exc 0.083628 0.917516 1.0000
13 exc 0.265724 0.740571 1.0000
20 exc 0.0155848 0.9831669 1.0000
18 exc 0.176932 0.825691 0.0559
5 sat 0.998800 0.001209 0.0000
9 sat 0.025167 0.974961 0.9949
12 sat 0.971944 0.0278410 0.0000
17 sat 0.095357 0.905250 1.0000
19 sat 0.881802 0.120842 0.0000
22 sat 0.028366 0.972002 0.8586
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Actual
Report Rating
8 exc
10 exc
4 exc
13 exc
20 exc
18 2Xc
5 sat
9 sat
12 sat
17 sat
19 sat
22 sat

18 Variable Model

{Neural Net Prediction)

Y1

. 129772
.098736
.018796
.152416
.026731
. 178046
.737891
.037942
.993368
. 755344
.996412
.047274

QO OO0 OO0
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Y2

.869767
.902190
.981202
.847843
.973338
.820164
.2690C8
.961£839
.006584
.231363
.003631
.952327

{Reg Pred)
Y

.0006
.0000
.9994
.4522
.0000
.0000
.0036
.0000
.9981
.0000
. 2270
. 0000

COoOO0OCPHoOoORmOO —~O




8 Variable Model, (Alternate Sample)

Actual {Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 Y

14 exc 0.440171 0.565847 0.0000
1 exc 0.534030 0.477379 0.9999
11 exc 0.135683 0.865385 0.9993
15 exc 0.172818 0.829728 0.3845
6 exc 0.413235 0.588076 1.0000
2 exc 0.995555 0.004484 0.0323
3 sat 0.918370 0.081363 0.0000
9 sat 0.05€90¢6 0.9419306 0.9998
12 sat 0.759408 0.232830 G.9910
17 sat 0.285728 0.721084 0.0000
19 sat 0.252400 0.741654 0.0000
22 sat 0.024315 0.975588 0.6596

13 Variable Model (Alternate Sample)
Actual {Neural Net Prediction) (Reg Pred)

Report Rating Y1 Y2 Y

14 exc 0.389303 0.606516 1.0000
1 exa 0.597827 0.397503 1.0000
15 exc 0.092907 0.907757 0.9744
6 exa 0.780399 0.223840 0.0000
2 exc 0.944783 0.0544156 0.9997
it exc 0.066412 0.933905 0.9/80
) sat 0.954918 0.045763 0.0000
9 sat 0.022977 0.976975 1.0000
12 sat $.018223 0.982116 0.0998
17 sat $.902589 0.101709 0.0000
19 sat 0.114542 0.885549 0.0149
22 sat 0.0248688 0.975414 0.9946
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13 Variable Mode {(Alternate Sample)

Actual {Neural Net Prediction) (Reg Pred)

Rating Y1l T2 X
11 exc 0.731884 0.265040 0.1466
1 exc 0.303620 0.70990C6 0.0079
11 exc 0.037471 0.962645 0.9996
15 exc 0.092089 0.906209 0.9957
6 exc 0.9331460 0.068237 0.7879
2 exc 0.9904183 0.009197 0.00025
3 sat 0.737891 0.269006 0.0036
9 sat 0.037942 0.961539 1.0000
12 sat 0.993368 0.006584 0.9981
17 sat 0.755344 0.231363 0.0000
19 sat 0.996412 0.003631 0.2270
22 sat 0.047274 0.952327 0.0000




Apvendix J:

Rankit Plots
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RANKITS VS (Net-Reg)
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